冷启动推荐
冷启动
import numpy as np
from lightfm.datasets import fetch_stackexchange
data = fetch_stackexchange('crossvalidated',
test_set_fraction=0.1,
indicator_features=False,
tag_features=True)
data{'train': <3221x72360 sparse matrix of type '<class 'numpy.float32'>'
with 57830 stored elements in COOrdinate format>,
'test': <3221x72360 sparse matrix of type '<class 'numpy.float32'>'
with 4307 stored elements in COOrdinate format>,
'item_features': <72360x1246 sparse matrix of type '<class 'numpy.float32'>'
with 198963 stored elements in Compressed Sparse Row format>,
'item_feature_labels': array(['bayesian', 'prior', 'elicitation', ..., 'events', 'mutlivariate',
'sample-variance'], dtype='<U50')}特征Embedding空间
最后更新于